From Angry Birds to Learning Words:
Applying Features of Game Design to Semantic Intervention

Tim Brackenbury, Ph.D., CCC-SLP
March 15, 2013
Cullowhee Conference on Communicative Disorders

Collaborators
Dr. John Folkins
Allison Hadley
Dr. Miriam Krause
Elizabeth Witter
Anna Ehrhorn

A bit about me

• Atari and Sega, late 1970s into 1990s
• M.A. at University of Kansas
• 5 years as a clinical SLP
 • Boys Town National Research Hospital
 • Children’s Therapuetic Learning Center
• Ph.D. at University of Kansas

Schedule
• Video Game Design & Clinical Practice
• The Full Experience of Semantics
• Discovery & Risk Taking in Development
• Generalization from Treatment
• Unlocking Future Rewards

Video Games Motivate

• People invest money in video games
 – Games grossed $10.5 billion in 2009
• People willingly invest time and effort in video games
 – The average gamer spends eight hours per week playing video games
• People concentrate on video games and stay on task for long periods of time

Reference:
http://www.esrb.org/about/images/vidGames04.png

Video Games Motivate

• A wide variety of people play video games
 – 67% of U.S. households play video games
 – 40% of gamers are female
 – average age of gamers is 34
 – 48% of games are rated “E for Everyone”

Reference: http://www.esrb.org/about/images/vidGames04.png
The Appeal of Video Games is Not Accidental

- Games of all sorts have been refined through the years.
- Game designers are motivated to make games more engaging.
- Principles of game design have been studied extensively in both industry and academia.

Five Principles of Video Game Design

1. **Full Experience Principle**
 - Many games address **epic themes**
 - allocation of limited resources
 - decision making in ambiguous contexts.
 - Every aspect of the game contributes to the epic themes
 - Example Game: *Penumbra*

2. **Risk Taking Principle**
 - Tasks are designed to be challenging but not impossible.
 - Goldilocks / Zone of Proximal Development
 - Player innovation and creativity are encouraged
 - Failure has only small penalties and is expected
 - Example Game: *Braid*
3. Discovery Principle

- Players learn by exploration and experimentation
- “How to” instruction is kept to a minimum
 - no manuals
 - online player supports available

Example Game: *World of Goo*

4. Generalization Principle

- New knowledge is put to work right away
- Skills learned early should transfer and be useful later

Example Game: *Epic Mickey*

5. Rewards System Principle

- Reinforcements are given frequently and in a variety of ways
 - points
 - new tools / weapons
 - additional information
 - unlocking extra levels

Example Game: *Pokémon*
Pokémon

Groups

• Get together with 4 or 5 people
• Pick a principle
• Discuss how it might relate to client learning
 — How does your current clinical practice reflect this principle?
 — What might be new ways to incorporate this principle into practice?

Groups will report out in 10/15 minutes.

Recap of the Five Principles of Video Game Design

1. Full Experience Principle
2. Risk Taking Principle
3. Discovery Principle
4. Generalization Principle
5. Rewards System Principle

Group Reports

• Each group reports
• General Discussion, questions, and observations

Focus on Semantics

• Continue using the video game principles
 — but now applying them to
 • what we do as clinicians
 • how children learn semantics

The Full Experience of Semantics

• Semantics has an image problem
 — Semantics = Vocabulary
The Full Experience of Semantics

• Semantics has an image problem
 — Semantics \neq Vocabulary

• Semantics $>$ Vocabulary
 — vocabulary is one aspect of semantics

The Full Experience of Semantics

• Problems with a Semantic = Vocabulary focus
 — Vocabulary items need to be
 • Complete
 • Interconnected
 — Semantics deals with both of these issues and more

The Full Experience of Semantics:
Completeness

• What is a word (or vocabulary item)?
 — a unit of language, consisting of one or more spoken sounds or their written representation, that functions as a principal carrier of meaning.
 (www.dictionary.com)
 — a phonological form paired with a meaning

The Full Experience of Semantics:
Completeness

• What is a word (or vocabulary item)?
 — a unit of language, consisting of one or more spoken sounds or their written representation, that functions as a principal carrier of meaning.
 (www.dictionary.com)
 — a phonological form paired with a meaning
 $/d\alpha k/$
 duck

The Full Experience of Semantics:
Completeness

— The form and meaning(s) should be shared across people
 • kooba

— The meanings should be complete, but don’t have to be
 • pervert
 • sacapuntas
The Full Experience of Semantics: Completeness

• What are the parts of a dictionary's definition?

Vocabulary entries should include all of these parts.

The Full Experience of Semantics: Interconnectedness

• A dictionary's definition is a good metaphor for vocabulary completeness

• But, a dictionary is not a good metaphor for the lexicon
 • each individual’s “mental library” of word knowledge

The Full Experience of Semantics: Interconnectedness

– 5 people have target words.
– We want to connect these words
 • What combinations of other single words will achieve this?
 – think six degrees of separation
 – We need a data keeper

Discovery & Risk Taking: Semantic Development

• Learning first words is a slow, laborious process
 – mostly dependent on adult models and repetition

• But it starts to take off during the second year of life
 – because of experiential learning and application
 • finding a pattern and using it to increase learning
 – a process of discovery and risk taking
Discovery & Risk Taking: Semantic Development

- Experiential Learning and Application Examples
 - Infant phonological sensitivities
 - semantic principles
 - word’s semantic and phonological properties

- Between 18 months and 18 years of age
 - children learn an average of 9 to 10 words a day
 - Fast Mapping
 - initial connection between a new phonological form and a referent
 - Slow Mapping
 - refinement of a fast mapped lexical entry over time and experience
 - and perhaps integration with known items

- Effective and efficient lexicons are organized
 - Entries are interconnected in multiple ways
 - Taxonomic categories
 - Thematic categories
 - Synonyms / antonyms
 - Phonological structure

- Abstract semantics develop across the elementary school years

- Reduced input
 - hearing loss, autism, poverty
 - cannot build a large vocabulary or interconnected lexicon

- Low vocabularies
 - late talkers

- Word finding deficits
 - vocabulary may be within normal limits
 - underdeveloped meanings
 - especially with with abstract concepts
 - specific language impairments

Generalization to Better Semantics: Assessment

- What do you do to assess semantics?
 - Brackenbury & Pye (2005)
 - Standardized tests are mostly focused on vocabulary
 - A few look at other aspects

- Preschool Language Scales
- Test of Semantic Skills
 Ages 9 – 13
Generalization to Better Semantics:
Assessment

– Language sample analysis
 • limited information
 • may need to verify with other tasks
– Nonword repetition tasks
 • measure of phonological short-term memory
– Clinician developed tasks
 • good for evaluating interconnectedness

Generalization to Better Semantics:
Case Examples

• Lara, 3 years, 7 months
 – first expressive words ~ 18 months
 – receptive and expressive vocabulary scores < 10th percentile
 – sorts and labels common vocabulary scores into categories
 – vocabulary during language sample focused on
 • objects in the environment
 • attribute words
 • prototypical action words for those objects

Generalization to Better Semantics:
Case Examples

• Luigi, 9 years, 8 months
 – receptive and expressive vocabulary scores at 18th and 14th percentile, respectively
 – accurate but slow word naming
 – definitions imprecise
 – averages 65% accuracy with classroom vocabulary
 – categorizes by common groups and functions
 • low accuracy for classroom vocabulary

Generalization to Better Semantics:
Case Examples

• In groups of 4 or 5, spend 10 minutes discussing
 – your targets for Lara
 – how you would address them
 – write down your responses to be collected later
 • no names needed

Generalization to Better Semantics:
Intervention for Low Vocabularies

• Interactive Modeling
 – embed lexical models in everyday contexts
 – facilitate their use through focused stimulation techniques

I. Parent Training Models
 – training parents/caregivers as agents of change
Generalization to Better Semantics: Intervention for Low Vocabularies

— The Hanen Program
 ● parents are taught techniques that promote language learning through daily interactions
 — Observe, Wait, Listen
 — Say less, Stress, Go Slow, Show
 ● adults model target vocabulary, but do not require a response

— Research Evidence
 ● Positive effects on parent language facilitation
 — Girolametto, Pearce, and Weitzman (1996)
 ● Increases in children learning target words
 — Girolametto, Pearce, and Weitzman (1996)
 — Whitehurst et al. (1991)
 ● Variable results for generalization to other word learning
 — Significant results by Girolametto, Pearce, and Weitzman (1996)
 — Non-significant results from Whitehurst et al. (1991)

Generalization to Better Semantics: Intervention for Low Vocabularies

II. Clinician-based models
 ● Positive effects with SLP focused stimulation
 — Kouri (2005)
 — Classroom + supplemental work

Generalization to Better Semantics: Intervention for Low Vocabularies

• Positive effects with parents across naturalistic environments
 — Home: Girolametto, Pearce, and Weitzman (1996); Whitehurst et al. (1991)
 — Clinic group: Lederer (2001)
 — Classroom: Wilcox, Kouri, and Caswell (1991)

• Positive effects with other adult conversational partners
 — Rustan & Schwanefugel (2010)

Generalization to Better Semantics: Intervention for Low Vocabularies

• Positive effects when targeting semantic and phonological features of new words
 — Motsch and Ulrich (2012)

• Explicit vocabulary instruction helps
 — Coyne, McCoach, and Kapp (2007)

Generalization to Better Semantics: Case Examples

• Given what we’ve just discussed
 — How would you alter your intervention for Lara?

 — draw a horizontal line on your original sheet
 — write your changes below the line
Generalization to Better Semantics: Case Examples

• What we did...
 – Hanen model + clinician focused stimulation
 – Sessions targeted prior and new technique
 • parent use previous technique
 • introduce new technique
 • clinician use of technique
 • parent trial of technique
 • discuss parent performance and words to target
 – Later sessions highlighted semantic & phonological features

Generalization to Better Semantics: Intervention for Word Finding

Storage of words + Retrieval of words = WFD

Generalization to Better Semantics: Intervention for Word Finding

Storage of words

Semantics

Phonology

Emphasizes:

Increasing knowledge within lexical entries

Improving connections between entries

Generalization to Better Semantics: Intervention for Word Finding

• Research Evidence
 – Semantic Storage
 • Marks and Stokes (2009)
 – Narrative-based intervention, targeting words through
 » definitional sentences
 » contextual sentences
 » exposure, imitation, and retelling
 – Significant increases in target words
 – Non-significant for control words

Generalization to Better Semantics: Intervention for Word Finding

• Hodgepodge of intervention models
 – single feature
 • semantic storage
 – multiple features
 • semantic vs. phonological
 – multiple features across modes
 • semantic vs. phonological storage vs. both
Generalization to Better Semantics: Intervention for Word Finding

— Phonology Retrieval
 • German (2002)
 — Identified and practiced phonological cues of
 > syllable counting
 > phonological neighbors
 > verbal rehearsing
 — Significant increases in target words
 — Non-significant for control words

— Semantic vs. Phonology
 • Wing (1990)
 — Semantic features
 > definition
t > categorization
 > picture association
 — Phonological features
 > rhyming
 > syllable count
 > imagery
 > phoneme count
 — Phonological group > semantic group on trained and untrained words

— Semantic vs. Phonology
 • Wright, Gorrie, Haynes, and Shipman (1993)
 — Semantic features
 > category
 > function
 > content
 > description
 > similarity
 > association
 — Phonological features
 > length
 > rhyme
 > rhythm
 > initial sound
 > other sounds
 — Semantic group > phonological group on untrained words

— Semantic vs. Phonology vs. Both
 — Semantic features
 > category
 > attributes
 > functions
 — Phonological features
 > rhyming
 > initial sound
 > syllable counting
 — Words trained under Both conditions were learned the best

Intervention = ↓ # WFD

Improvement = Storage + Retrieval

Improvement = Semantic + Phonology

↓ WFD = TEACHING > TESTING
Generalization to Better Semantics: Case Examples

• Given what we’ve just discussed
 – How would you alter your intervention for Luigi?
 – draw a horizontal line on your original sheet
 – write your changes below the line

Generalization to Better Semantics: Case Examples

• What we did...
 – Teach semantic and phonological features for common words
 • sorting and grouping activities
 • identifying
 – Identify the features in low frequency words
 – Identify the features in target vocabulary words
 • within contexts

Unlocking Future Rewards

• What might the future hold???
 – Selecting groups of words based on semantic and phonological neighbors

Unlocking Future Rewards

• What about your future???
 – What questions and comments do you have?
 – How might you change your practice as a result of this conference?

Contact Information

Tim Brackenbury, Ph.D., CCC-SLP
246 Health Center Building
Bowling Green State University
Bowling Green, OH 43403

bgSU

tbracke@bgsu.edu
419.352.2515
Core References

Video Game Principles

Full Experience of Semantics

Discovery & Risk Taking In Semantic Development

Core References

Research Evidence: Low Vocabularies

Core References

Core References

Research Evidence: Low Vocabularies
Image URLs

- Slide #1
 http://jcgill37.deviantart.com/art/Angry-Birds-209987239

- Slide #2

- Slide #3
 http://www.uvlist.net/ec2/game-99763-Superman

- Slide #4
 http://hardreactor.com/2011/06/23/sonic-turns-the-big-3-0-today/

- Slide #5
 http://j2.getatic.com/images?q=wrtn-Akq2855OoPcb4AmQA0hsZpmoM6-hwaeDEv-dwSTf13UD3PbTLtLDmssuU31fG

- Slide #8

- Slide #9
 http://www.xblafans.com/the-xbla-fans-staff-looks-back-on-our-gaming-memories-57592.html

- Slide #20
 http://fc03.deviantart.net/fs46/f/2009/178/0/e/Best_VideoGame_Characters_Ever_by_PacDuck.jpg

- Slide #22

- Slide #24 & 25
 http://www.shoemycolor.com/media/wysiwyg/plants-vs-zombies-paper-craft.jpg

- Slide #28
 http://4chon.net/duck/index.html

- Slide #30

- Slide #32
 www.dictionary.com

- Slide #34

- Slide #35

- Slide #37

- Slide #41

- Slide #42

- Slide #44, 54, & 55
 http://www.listal.com/ViewImage/268326

- Slide #46, 67, & 68
 http://en.wikipedia.org/wiki/Luigi

- Slide #49
 http://www.staspeech.com/parents.htm

- Slide #55
 https://signal.federatedmedia.net/thursday-signal-hodge-meet-podge/

- Slides 69 & 70
 http://rlv.zcache.com/achievement_unlocked_sticker-p271611345625385048brevb3_300.jpg

- Slides 69, 71 & 72
 http://fc03.deviantart.net/fs46/f/2009/178/0/e/Best_VideoGame_Characters_Ever_by_PacDuck.jpg

- Slides 81, 82, & 83